

Pneumatic Grippers

Parallel and Angular Grippers

Catalog 1900-2/US

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the "Offer of Sale" found on the last page of this publication.

© Copyright 2003, Parker Hannifin Corporation, All Rights Reserved

Introducing Parker's Expanded Line of Pneumatic Grippers

Parallel Grippers

- Miniature
- Automation
- Low Profile
- Precision
- Long Stroke
- Heavy Duty
- Three-Jaw

Angular Grippers

- Miniature (30° and 180°)
- Automation (30° and 180°)
- High Force (30°)
- Precision (30° and 180°)
- Locking (12°)

Parallel Grippers

Stroke (in)			Total Grip Force (lbs)											Sen	sors	s													
		Model Number	0-0.24	0.25-0.49	0.50074	0.75-0.99	1.00-1.49	1.50-1.99	2.00-3.99	4.00-4.99 5.00 -	+00.c	0-4	5-9	10-24	25-49	50-99	100-249	250-499	500-999 1000+	Metric Design		Ball Bearing Construction	Clean Room	Spring Open	Spring Closed	Reed/Hall Effect	Proximity	Non-Syncronou:	Page Number
Miniature	* * *	GPR-1A GPR-3A GPCR-10A GPCR-10C GPCR-16C GPCR-20C GPCR-25C P5G-HPM-1 P5G-HPM-2 P5G-HPM-3	•	•	•	•						•	•	•												• • • •	•		4 5 10 11 12 13 16 17 18
Automation		P5G-HP-5 P5G-HP-10 P5G-HP-11 P5G-HP-12 P5G-HP-12 P5G-HP-15 P5G-HP-15 P5G-HP-15 P5G-HP-17 P5G-HP-17 P5G-HP-18 P5G-HP-18 P5G-HP-19 P5G-HP-10 P5G-HP-	•	•	•	•	•	•	•						•	•	•	•									• • • • • • • • •		22 23 24 25 26 27 28 29 30 31 32 33 34 34 35
	9	GP110 GPT15 P5G-AP3 P5G-AP4 P5G-AP5 P5G-AP6	•	•	•										•	•	•			•				0 0 0	0 0 0 0	•	• • • • • • • • • • • • • • • • • • • •		40 41 46 47 48 49
Low Profile		GPEL-8 GPEL-12 GPDL-8 GPDL-14 (S) GPDL-14 (S) GPDL-14 (L) GPDL-18 (L) P5G-HPL-1 P5G-HPL-2 P5G-HPL-3 P5G-HPL-3 P5G-HPL-4			•	•	•	•	•			•		•	•							• • • • • • • • • • • • • • • • • • •	0000			• • • • • • • •			58 59 62 63 64 64 64 65 65 70 71 72 73
Precision	۲	P5G-RH1 P5G-RH2 P5G-RH3 P5G-RH4 P5G-RH5 P5G-HP-50P P5G-HP-50P P5G-HP-25P P5G-HP-35P P5G-HP-35P P5G-HP-40P P5G-HP-43P	•	•	•	•	•		•					•	•	•	•	•	•			• • • •				• • • • •	• • • • • • • •		78 79 80 81 82 86 87 88 89 90 91
High Force/Long Stroke		GPK-12 GPK-12 GPK-26 GPK-25 P5G-HPW-250 P5G-HPW-375-1 P5G-HPW-375-2 P5G-HPW-500-1 P5G-HPW-500-1 P5G-HPW-625-1 P5G-HPW-625-2 P5G-HPW-625-2 P5G-HPW-750 P5G-HPB-24					•	•		•					•	•	•					•				•	• • • • • •		96 97 98 99 102 103 104 105 106 107 108 109 114
1		P5G-HPB-26	1	1		1						1	1					•		11		•		1		1	•	1	115

 \bullet = standard, O = optional

Three Jaw Grippers

					Stro	ke (i	1)				T	otal	Gri	p Fo	orce	(lbs	s)							Sen	sors	s		
	Model Number	0-0.24	0.25-0.49	0.50074	0.75-0.99	1.00-1.49 1 50-1 00	2.00-3.99	4.00-4.99	5.00+	0-4	5-9	10-24	25-49	50-99	100-249	250-499	500-999	1000+	Metric Design	Ball Bearing Construction	Clean Room	Spring Open	Spring Closed	Reed/Hall Effect	Proximity	Non-Syncronou	Dada Mumbar	Page Number
Three Jaw	P5G-HPC-315 P5G-HPC-320 P5G-HPC-331 P5G-HPC-344 P5G-HPC-356 P5G-HPC-368		•	•	•	•									•	•	•	•	0 0 0 0 0 0		• • • •			• • • •			1: 1: 1: 1: 1: 1: 1:	20 21 22 23 24 25

Angular Grippers

				Т	otal Gri	p Force					_	Sens	sors	
		Model Number	30 Degree 180 Degree	0-4 E 0	2-3 10-24 25-49	50-99 100-249	Metric Design	Ball Bearing Construction	Clean Room/ Dust Cover	Spring Open	Spring Closed	Reed/Hall Effect	Proximity	Page Number
	4	GVC-8 GVC-10 GVC-16 GVC-20 GVC-25	• • • •	•	•		• • •			0 0 0 0		• • •		132 133 134 135 136
	M	GAA101 GAA151	•		•	•						•	•	140 141
Angular		P5G-HA-5 P5G-HA-6 P5G-HA-7 P5G-HA-7 P5G-HA-8 P5G-HA-10	• • • •			•	0 0 0 0					• • •		146 147 148 149 150
30°		P5G-AA3 P5G-AA4 P5G-AA5	•		•	•	•				0 0 0	•	•	154 155 156
	¥	P5G-AA6 P5G-RK1 P5G-RK2 P5G-RK3 P5G-RK4 P5G-RK5 3H2	• • • • • •		•	•	• • • • •		0 0 0 0	0		•	• • • • • • •	157 162 163 164 165 166 174
12°		P5G-HA15 P5G-HA25	12 12			•	0						•	170 171
ular	~	GVH-12 GVH-16 GVH-20 GVH-25	• • • •	•			•					• • • • •		178 179 180 181
Ang	-	GAW101 GAW151	•			•						•	•	184 185
180° Wide		P5G-AW3 P5G-AW4 P5G-AW5 P5G-AW6	•				• • •				0 0 0	• • • • •	• • • • •	190 191 192 193
		P5G-RB1 P5G-RB2 P5G-RB3	•		•	•	•		0 0 0			•	•	200 201 202

 \bullet = standard, O = optional

Force Requirements

When determining aripper force requirements, the aripper fingers must be able to control the workpiece under worstcase conditions. The specific workpiece needs to maintain a steady, constant position within the grasp of the fingers, and at the same time, care must be taken to ensure the workpiece will not deform.

There are two types of grips that determine the force required from a gripper: (1) friction grip and (2) encompassing grip.

Friction grip depends on the frictional force of the gripper to maintain the position of the workpiece. Generally, this corresponds to tight tolerances and increased positional accuracy. Typical coefficient of friction for a friction grip is 0.2 to 0.4. This will vary depending on specific applications. A typical friction grip requires as much as four times the force to perform the same function as an encompassing grip.

Encompassing grip uses the fingers to cradle the workpiece. This provides for more stability and safety because the fingers must be forced open to move the workpiece.

(Angular Gripper Shown)

Grip Forces

Forces are additive when figuring out the total gripper holding force. The weight of the workpiece governs the required holding force. Forces can be broken down into:

Weight – weight of part and tooling

 Acceleration – starting and stopping forces Both forces are additive.

A factor of safety should always be included and can vary depending on specific application. In general, the following factor of safety is suggested:

> Friction grip 4 Encompassing grip 1.25

Example 1 uses gravitational force (G = 32.26 ft/s²) to solve for gripper holding force.

Example 1:

A workpiece weighing 20 pounds is subject to an acceleration of .5G (16.1 ft/s²). The grip force needed is

Weight of Workpiece + Acceleration Force = Grip Force

20 lbf + (20 lbf x .5) = 30 lbf

From the example, solve for grip force.

Friction grip = 4×30 lbf = 120 lbf

Encompassing grip = 1.25×30 lbf = 37.5 lbf

Use load charts for individual gripper models to determine the correct gripper size.

Torque

The forces acting on the center of gravity of the workpiece at a distance (L) from the bottom of the gripper creates a moment arm.

The sum of the force components acting on the center of gravity can be broken down into:

- · Force created by static load
- · Force created from acceleration

Both forces are additive so that:

Sum of Force Components x Distance (L) = Total Torque

When solving for torque, be aware that forces will change depending on the orientation of the workpiece. To minimize torque, the workpiece should be gripped as close to the top of the gripper as possible.

System Design

The two main considerations are (1) throughput and productivity design and (2) reliability design. By overlapping each criteria, a design may concentrate on both production and reliability. Also, in multiple steps or functions, both design concentrations can be utilized to achieve a desired result. Each function in the system is unique and must be analyzed according to a specific design criteria.

Throughput and Productivity Criteria

- Minimize dead space between gripper fingers and workpiece. This is the clearance between a fully open/ closed gripper and the workpiece. Use encompassing gripper fingers and minimal jaw travel.
- 2) Minimize weight of gripper to decrease acceleration forces.
- 3) Clamp workpiece securely. Use an encompassing grip to increase machine speeds.
- 4) Avoid time consuming tool changes. Use one gripper for various workpieces.
- 5) Use one gripper to perform multiple functions.

Reliability Criteria

- 1) Clamp workpiece securely. Minimize the possiblity of a dropped or misaligned workpiece.
- 2) Use encompassing type grip. Ensure precision and accuracy.
- 3) Regulate clamping force. Protect against deforming the workpiece.
- 4) Minimize finger length. The longer the tooling, the more the finger will deflect and lose grip force.
- 5) Provide sufficient deadspace to ensure clearance between the part and the fingers. Minimize the chance of the fingers crashing into a misaligned part.
- 6) Gripper fingers should properly align the workpiece on critical operations.
- Surface materials of both gripper and workpiece should clamp at low friction to ensure precise and accurate placement of the workpiece.
- Do not use parts in an assembled workpiece to maintain proper part alignment in the gripper – any tolerance in the assembled workpiece can affect the alignment.
- Use a gripper dedicated to one function to perform multiple functions – minimizes the chance of being mishandled since the workpiece never leaves the gripper.
- 10) Utilize cushions or shock absorbers to create smooth acceleration or deceleration.

Using Catalog Data Load Data

The graph curves have been determined mathematically. Forces may deviate in practical applications from predetermined values. For maximum gripping force, keep finger tooling as short as possible. Maximum load that grippers can handle will vary depending on part size, texture, shape of finger tooling, speed, acceleration and air pressure.

Conversion	Chart
-------------------	-------

Metric to E	nglish						
(Multiply	_ by	to obta	in)				
Length mm	0.0394	in	Key mm = millimeter				
Area mm ² cm ²	0.0016 0.155	in² in²	cm = centimeter cc = cubic centimeter L = liter q = gram				
Volume mm ³ cm ³ (cc) L	6.10x10 ⁻⁵ 0.061 0.0353	in ³ in ³ ft ³	kg = kilogram kgf = kilogram force N = Newton Nm = Newton meter				
Weight g kg Force	0.0353 2.204	oz. lb.	in = inch ft = foot oz = ounce lb = pound				
kgf N	2.204 0.224	lbf lbf	lbf = pound force ft-lb = foot pound				
Torque Nm	0.737	ft-lb					
Pressure kPa bar	0.145 14.50	psi psi					
Energy Nm	0.737	ft-lb					
Power W kW	0.737 1.341	ft-lb/s hp					
°F = (1.8 x °	r e C) + 32						
Flow rate I/min x 0.035 = SCFM							

Dimensional Data

Unless otherwise noted, all dimensions are in inches (mm). All tolerances are as shown below:

Imp	erial (in)	Metric (mm)							
0.0	$= \pm 0.01$	[0]	= [± 0.25]						
0.00	$= \pm 0.005$	[0.0]	= [± 0.13]						
0.000	$= \pm 0.0005$	[0.00]	= [± 0.013]						

Catalog 1900-2/US Application Fax	Pneumatic Grippers Introduction											
Contact Information:												
Name:	Phone Number:											
Company:	Fax Number:											
Please tell us about your application and we will respond application details and <i>fax to (330) 334-3335</i> .	d promptly with recommendations. Please provide the following											
Weight of workpiece:	Type of position sensor:											
Workpiece hardness:												
Workpiece temperature:	Number of sensors:											
Workpiece shape:	Flow controls*:											
Number of orientations per cycle:	*Flow controls are recommended on all grippers.											
Type of actuator:												
Maximum acceleration:												
Cycles per minute:	 Sketch of applications											
Distance Travel ner Sten:												
Type of Fingers: Friction Encompassing												
Supply air pressure:												
Control method:												
Electrical supply:												
Operating conditions:												
	— [

